DIRICHLET BOUNDARY CONTROL OF HYPERBOLIC EQUATIONS IN THE PRESENCE OF STATE CONSTRAINTS BORIS S. MORDUKHOVICH1 and JEAN-PIERRE RAYMOND2
نویسندگان
چکیده
We study optimal control problems for hyperbolic equations (focusing on the multidimensional wave equation) with control functions in the Dirichlet boundary conditions under hard/pointwise control and state constraints. Imposing appropriate convexity assumptions on the cost integral functional, we establish the existence of optimal control and derive new necessary optimality conditions in the integral form of the Pontryagin Maximum Principle for hyperbolic state-constrained systems.
منابع مشابه
Dirichlet Boundary Control of Hyperbolic Equations in the Presence of State Constraints
We study optimal control problems for hyperbolic equations (focusing on the multidimensional wave equation) with control functions in the Dirichlet boundary conditions under hard/pointwise control and state constraints. Imposing appropriate convexity assumptions on the cost integral functional, we establish the existence of optimal control and derive new necessary optimality conditions in the i...
متن کاملNeumann Boundary Control of Hyperbolic Equations with Pointwise State Constraints
We consider optimal control problems for hyperbolic equations with controls in Neumann boundary conditions with pointwise constraints on the control and state functions. Focusing on the multidimensional wave equation with a nonlinear term, we derive new necessary optimality conditions in the form of a pointwise Pontryagin Maximum Principle for the state-constrained problem under consideration. ...
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملError Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations
We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The control is the trace of the state on the boundary of the domain, which is assumed to be a convex, polygonal, open set in R. Piecewise linear finite elements are used to approximate the control as well as the state...
متن کاملOptical properties of a semi-infinite medium consist of graphene based hyperbolic meta-materials with tilted optical axis
In this paper, the optical properties of a semi-infinite medium composed of graphen-based hyperbolic meta-materials with the optical axis were tilted with respect to its boundary with air, by using the Maxwell equations; then the homogeneous effective medium approximation method was studied. The results showed that the orientation of the structure layers (geometric induced anisotropy) affec...
متن کامل